On the Explicit Solution of a Time-Optimal Control Problem by Means of One-Sided Spline Approximation

Burkhard Lenze
Fachbereich Mathematik und Informatik, Fern Universität Hagen, D-5800 Hagen, West Germany
Communicated by Charles K. Chui

Received January 22, 1987

Abstract

In [Israel J. Math. 10 (1971), 261-274] Schoenberg gives the explicit solution of a time-optimal control problem using the extremal properties of the so-called perfect B-splines. In this paper we consider a modification of Schoenberg's problem by taking into account the inertia of the moving particle. We give an explicit solution of the modified problem by means of one-sided spline approximations based on perfect B-splines. © 1989 Academic Press, Inc

1. Introduction

In this paper we consider the following time-optimal control problem which is a modification of the problem solved by Schoenberg [7]; we take into account the inertia of the moving particle.

A particle P moves on the y-axis and should reach the two points $y_{0}=0$ and $y_{1}=L$ cyclically as fast as possible. The motion is controlled by some appropriate smoothness conditions on the velocities of different orders of the particle and by a restriction on the energy which is available per one cycle. Moreover, we allow the particle to glide over the points $y_{0}=0$ and $y_{1}=L$, respectively, and to spend the same time used to go through $[0, L]$ to return and come to rest at $y_{0}=0$ resp. $y_{1}=L$. This property of the inertia of the particle P also makes sense in view of practical problems since reaching a prescribed point as fast as possible is often more relevant than reaching this point at rest (to switch a contact on/off, to open/shut a valve, etc.).

Before we start to solve the problem we reformulate it in a precise mathematical form.

Problem. Let $n \geqslant 2$ be given arbitrarily. A particle P moves on the y-axis
from $y_{0}=0$ to $y_{1}=L$ such that its location function S_{n} and all velocities of different orders,

$$
S_{n}^{(k)}, \quad k=1,2, \ldots, n-2
$$

are absolutely continuous. We assume that the particle P starts from rest at $y_{0}=0$ at the time $t=0$:

$$
S_{n}^{(k)}(0)=0, \quad k=0,1, \ldots, n-2
$$

and that P reaches the point $y_{1}=L$ at the time $t=T / 2$ with arbitrary velocities. During the time $T / 2<t<T$ the particle is above $y_{1}=L$, retards, and returns to $y_{1}=L$. At the time $t=T$ the particle P reaches the point $y_{1}=L$ for the second time coming to rest:

$$
S_{n}(T)=L, \quad S_{n}^{(k)}(T)=0, k=1,2, \ldots, n-2
$$

After having rested at $y_{1}=L$ for an arbitrary time the particle returns from $y_{1}=L$ to $y_{0}=0$ such that its location function s_{n} and all velocities of different orders,

$$
s_{n}^{(k)}, \quad k=1,2, \ldots, n-2
$$

are absolutely continuous. Resetting the clock at $t=T$ and counting backwards, P starts from rest at $y_{1}=L$ at the time $t=T$, i.e.,

$$
s_{n}(T)=L, \quad s_{n}^{(k)}(T)=0, k=1,2, \ldots, n-2 .
$$

FIG. 1. , resting positions of P of arbitrary duration; \odot, P on its way from $y_{0}=0$ to $y_{1}=L ;$ © P on its way from $y_{1}=L$ to $y_{0}=0$.

Because of the symmetry of the problem P reaches the point $y_{0}=0$ at the time $t=T / 2$ with arbitrary velocities. During the time $0<t<T / 2$ the particle is below $y_{0}=0$, retards, and returns to $y_{0}=0$. At the time $t=0$ the particle P reaches the point $y_{0}=0$, again, coming to rest:

$$
s_{n}^{(k)}(0)=0, \quad k=0,1, \ldots, n-2
$$

Now, we are interested in finding the shortest time $2 T$ during which this motion can be performed and in describing the nature of this optimal motion with respect to the following additional restriction which may be interpreted as a property of the available energy:

$$
\left\|S_{n}^{(n-1)}-s_{n}^{(n-1)}\right\|_{\infty} \leqslant A .
$$

Here, $\|\cdot\|_{\infty}$ denotes the essential sup-norm with respect to $[0, T]$ and $A>0$ is an arbitrarily given constant.

2. Auxiliary Considerations Concerning One-Sided Spline Approximation

Analyzing the problem formulated in the first section we see that it is intimately connected with a special one-sided approximation problem of the step function $(x)_{+}^{0}$,

$$
(x)_{+}^{0}:=\left\{\begin{array}{ll}
1, & x \geqslant 0 \\
0, & x<0
\end{array}\right\} .
$$

In the following we will construct one-sided spline approximations of $(x)_{+}^{0}$ which will be used to solve the problem.

Let $-1=x_{0}<x_{1}<\cdots<x_{n}=1, n \geqslant 2$, be an arbitrary partition of $[-1,1]$ and let

$$
\begin{equation*}
M_{n}(x):=n \sum_{i=0}^{n}\left\{\prod_{\substack{j=0 \\ j \neq i}}^{n}\left(x_{i}-x_{j}\right)\right\}^{-1}\left(x_{i}-x\right)_{+}^{n-1} \tag{2.1}
\end{equation*}
$$

with

$$
\left(x_{i}-x\right)_{+}^{n-1}:=\left\{\begin{array}{ll}
\left(x_{i}-x\right)^{n-1}, & x_{i} \geqslant x, \\
0, & x_{i}<x,
\end{array} \quad 0 \leqslant i \leqslant n\right.
$$

the corresponding B-spline of degree $n-1$. It is well known that
(1) $\quad M_{n} \in C^{n-2}(\mathbb{R})$,
(2) $M_{n}(x) \begin{cases}>0 & \text { for }|x|<1 \\ =0 & \text { for }|x| \geqslant 1,\end{cases}$
(3) $\int_{-\infty}^{\infty} M_{n}(x) d x=1$.

Let us also consider the B-splines of degree $n-2$,

$$
\begin{equation*}
m_{n-1,0}(x):=(n-1) \sum_{i=0}^{n-1}\left\{\prod_{\substack{i=0 \\ j \neq i}}^{n-1}\left(x_{i}-x_{j}\right)\right\}^{-1}\left(x_{i}-x\right)_{+}^{n-2} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{n-1,1}(x):=(n-1) \sum_{i=1}^{n}\left\{\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(x_{i}-x_{j}\right)\right\}^{-1}\left(x_{i}-x\right)_{+}^{n-2} \tag{2.3}
\end{equation*}
$$

with supports $\left[x_{0}, x_{n-1}\right]=\left[-1, x_{n-1}\right]$ and $\left[x_{1}, x_{n}\right]=\left[x_{1}, 1\right]$, respectively.

From now on we assume that the given partition of $[-1,1]$ is symmetric, i.e.,

$$
x_{j}=-x_{n-j}, \quad 0 \leqslant j \leqslant n,
$$

which implies that $\frac{1}{2}\left(m_{n-1,0}+m_{n-1,1}\right)$ is an even function. Now, let us define

$$
\begin{align*}
& \varphi_{n}(x):=\int_{-\infty}^{x} \frac{1}{2}\left(m_{n-1,0}(t)+m_{n-1,1}(t)\right) d t-\frac{1}{2}\left(M_{n}(0)\right)^{-1} M_{n}(x) \tag{2.4}\\
& \Phi_{n}(x):=\int_{-\infty}^{x} \frac{1}{2}\left(m_{n-1,0}(t)+m_{n-1,1}(t)\right) d t+\frac{1}{2}\left(M_{n}(0)\right)^{-1} M_{n}(x) \tag{2.5}
\end{align*}
$$

It is easy to check that

$$
\begin{array}{ll}
\text { (1) } \varphi_{n}(x)=\Phi_{n}(x)=0 & \text { for } x \leqslant-1, \\
\text { (2) } \varphi_{n}(x)=\Phi_{n}(x)=1 & \text { for } x \geqslant 1, \\
\text { (3) } \varphi_{n}(0)=0, & \\
\text { (4) } \Phi_{n}(0)=1 . &
\end{array}
$$

Moreover, we have the following essential result.

Lemma 2.1. Let $n \geqslant 2$ and let $-1=x_{0}<x_{1}<\cdots<x_{n}=1$ be a symmetric partition of $[-1,1]$.

Then the spline functions φ_{n} and Φ_{n} are one-sided approximations of the step function $(x)_{+}^{0}$, i.e.,

$$
\begin{equation*}
\varphi_{n}(x) \leqslant(x)_{+}^{0} \leqslant \Phi_{n}(x), \quad x \in \mathbb{R} \tag{2.6}
\end{equation*}
$$

Especially, the corresponding one-sided approximation error has the representation

$$
\begin{equation*}
\Phi_{n}(x)-\varphi_{n}(x)=\left(M_{n}(0)\right)^{-1} M_{n}(x), \quad x \in \mathbb{R} \tag{2.7}
\end{equation*}
$$

Proof. We only consider the left-hand inequality of (2.6) since the other may be proved by similar arguments.

In case $n=2$ the knots are $x_{0}=-1, x_{1}=0$, and $x_{2}=1$. The interpolation conditions (1)-(4) stated above together with the fact that φ_{n} is linear on $[-1,0]$ and $[0,1]$ immediately yield the desired inequality.

In case $n \geqslant 3 \varphi_{n}$ is at least one time continuously differentiable. Again, by means of the interpolation conditions (1)-(4) it is therefore sufficient to prove that φ_{n}^{\prime} has precisely one zero in $(-1,1)$. Since

$$
\begin{aligned}
\varphi_{n}^{\prime}(x)= & \frac{1}{2}\left(m_{n-1,0}(x)+m_{n-1,1}(x)\right) \\
& -\frac{1}{4} n\left(M_{n}(0)\right)^{-1}\left(m_{n-1,0}(x)-m_{n-1,1}(x)\right)
\end{aligned}
$$

(cf. [8, p. 121, Theorem 4.16]) we obtain by means of Theorem 4.56, p. 162, of [8] that φ_{n}^{\prime} has at most-and therefore exactly-one zero in $(-1,1)$.

3. Auxiliary Results Concerning Perfect B-Splines

In Section 2 we introduced the spline functions φ_{n} and Φ_{n} which seem to be useful in solving the initial time-optimal control problem. Obviously, φ_{n} and Φ_{n} satisfy the desired interpolation conditions of the problem, but-at the moment-nothing is known about the behaviour of $\Phi_{n}-\varphi_{n}$ in connection with the energy restriction. In the following we will show that the use of specially distributed knots leads to a solution of this aspect too.

From now on let

$$
x_{k}:=-\cos \frac{\pi k}{n}, \quad k=0,1, \ldots, n
$$

be the extremal points of the nth Čebyšev polynomial and let $n \geqslant 2$ be
arbitrary but fixed. The B-spline M_{n} of degree $n-1$ corresponding to this partition is usually called the perfect B-spline of degree $n-1$.

Now, let us consider the following extremal interpolation problem (I):
Consider the set K_{n} of functions $f:[-1,1] \rightarrow \mathbb{R}$ which have absolutely continuous derivatives $f^{(k)}$ for $0 \leqslant k \leqslant n-2$ and satisfy the symmetric interpolation conditions

$$
\begin{aligned}
f^{(k)}(-1) & =0, \quad 0 \leqslant k \leqslant n-2, \\
f(0) & =1, \\
f^{(k)}(1) & =0, \quad 0 \leqslant k \leqslant n-2 .
\end{aligned}
$$

Find a function $f_{*} \in K_{n}$ which satisfies

$$
\left\|f_{*}^{(n-1)}\right\|_{\infty} \leqslant\left\|f^{(n-1)}\right\|_{\infty}
$$

for all $f \in K_{n}$. Here, $\|\cdot\|_{\infty}$ denotes the essential sup-norm with respect to $[-1,1]$.

For the essential ideas used in finding the unique solution of problem (I) we refer the reader to $[2,3,6,7]$.

Theorem 3.1. Let $n \geqslant 2$ be given arbitrarily. The extremal interpolation problem (I) has a unique solution which is given by the perfect B-spline M_{n} normalized with respect to the interpolation condition at $x=0$, i.e.,

$$
\begin{equation*}
f_{*}(x)=\left(M_{n}(0)\right)^{-1} M_{n}(x) \tag{3.1}
\end{equation*}
$$

Moreover, the extremal derivative of f_{*} satisfies the relation

$$
\begin{equation*}
\left|f_{*}^{(n-1)}(x)\right|=\left(M_{n}(0)\right)^{-1} 2^{n-2}(n-1)! \tag{3.2}
\end{equation*}
$$

for all $x \in(-1,1) \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}$.
Proof. The fact that f_{*} satisfies the interpolation conditions and the identity for $f_{*}^{(n-1)}$ is evident or even well known. Moreover, the results of $[4,1]$ immediately yield that f_{*} is really a solution of problem (I). The only point in question is the uniqueness of f_{*}. In this direction we only have a result of Karlin [5, Theorem 6.2], which states that f_{*} is the only perfect spline of degree $n-1$ with at most ($n-1$) interior knots which solves problem (I). Now, we want to prove that f_{*} is unique in K_{n} also.

Let $f \in K_{n}$ be a function solving problem (I) and $t_{1} \in(-1,1), t_{1} \neq 0$, be a point with $f\left(t_{1}\right) \neq f_{*}\left(t_{1}\right)$. In the case of $t_{1} \in(-1,0)$ we may assume without loss of generality that there exists a point $t_{2} \in(0,1)$ with $f\left(t_{2}\right) \neq f_{*}\left(t_{2}\right)$, also, and vice versa. Since if there is no point in the other interval with
different values of f and f_{*} we may only consider $\frac{1}{2}(f(x)+f(-x))$ instead of f which is an extremal solution of problem (I) also. Taking into account the interpolation conditions

$$
\left(f-f_{*}\right)(-1)=\left(f-f_{*}\right)(0)=\left(f-f_{*}\right)(1)=0
$$

we therefore know that $f-f_{*}$ has at least two local extrema in $(-1,0)$ and (0,1), respectively, with values different from zero. Now, using the extended version of Rolle's theorem $(n-2)$ times we obtain that $\left(f-f_{*}\right)^{(n-2)}$ has at least $(n-1)$ sign changes in $(-1,1)$ (here and in the following an obvious modification of the manner of speaking is necessary in the case $n=2$). On the other hand $\left\|f^{(n-1)}\right\|_{\infty}=\left\|f_{*}^{(n-1)}\right\|_{\infty}$ together with the fact that $f_{*}^{(n-1)}$ is constant on each interval $\left(x_{i}, x_{i+1}\right), 0 \leqslant i \leqslant n-1$, and taking alternating $\pm\left\|f_{*}^{(n-1)}\right\|_{\infty}$ imply that $\left(f-f_{*}\right)^{(n-2)}$ is monotone on each interval $\left(x_{i}, x_{i+1}\right), 0 \leqslant i \leqslant n-1$. Since by means of the interpolation conditions we have

$$
\left(f-f_{*}\right)^{(n-2)}(-1)=0=\left(f-f_{*}\right)^{(n-2)}(1)
$$

the piecewise monotonicity of $\left(f-f_{*}\right)^{(n-2)}$ allows at most $(n-2)$ sign changes of $\left(f-f_{*}\right)^{(n-2)}$ which gives the desired contradiction. Therefore, $f(t)=f_{*}(t)$ for all $t \in[-1,1]$ and f_{*} is the unique solution of problem (I) in K_{n}.

4. Solution of the Initial Time-Optimal Control Problem

According to the results obtained in Sections 2 and 3 we define the following functions leading-as we will show-to an optimal motion of the particle P,

$$
\begin{array}{ll}
s_{n, T}(t):=L \varphi_{n}\left(\frac{2 t}{T}-1\right), & t \in[0, T], T>0 \\
S_{n, T}(t):=L \Phi_{n}\left(\frac{2 t}{T}-1\right), & t \in[0, T], T>0 \tag{4.2}
\end{array}
$$

Remembering the construction of φ_{n} and Φ_{n} in Section 2 it is easy to check that $s_{n, T}$ and $S_{n, T}$ really describe a motion of P in the sense of the initial control problem. Let us now-for a moment-fix $T>0$, arbitrarily, and consider any two functions S_{n} and S_{n} describing admissible motions of the particle P of duration $2 T$. Then, by change of scale the function f,

$$
f(x):=\frac{1}{L}\left\{S_{n}\left(\frac{T}{2}(x+1)\right)-s_{n}\left(\frac{T}{2}(x+1)\right)\right\}, \quad x \in[-1,1]
$$

belongs to the set K_{n} of interpolation functions defined in Section 3. Since by Theorem 3.1

$$
f_{*}(x)=\left(M_{n}(0)\right)^{-1} M_{n}(x)
$$

is optimal in K_{n} with respect to the extremal condition and since

$$
\frac{1}{L}\left\{S_{n, T}\left(\frac{T}{2}(x+1)\right)-s_{n, T}\left(\frac{T}{2}(x+1)\right)\right\}=f_{*}(x)
$$

by Lemma 2.1 we obtain that $s_{n, T}$ and $S_{n, T}$ are optimal motions for each $T>0$. Therefore, we get the minimal time $T^{*}>0$ with respect to the given energy restriction by solving the identity

$$
L\left(\frac{2}{T^{*}}\right)^{n-1} 2^{n-2}(n-1)!\left(M_{n}(0)\right)^{-1}=A
$$

which yields

$$
\begin{equation*}
T^{*}=2\left\{L 2^{n-2}(n-1)!\left(M_{n}(0) \cdot A\right)^{-1}\right\}^{1 /(n-1)} \tag{4.3}
\end{equation*}
$$

In conclusion, we have the following result.
Theorem 4.1. Let $n \geqslant 2$ be given arbitrarily. Then the location functions

$$
\begin{array}{ll}
s_{n, *}(t):=L \varphi_{n}\left(\frac{2 t}{T^{*}}-1\right), & t \in\left[0, T^{*}\right] \\
S_{n, *}(t):=L \Phi_{n}\left(\frac{2 t}{T^{*}}-1\right), & t \in\left[0, T^{*}\right] \tag{4.5}
\end{array}
$$

with

$$
\begin{equation*}
T^{*}:=2\left\{L 2^{n-2}(n-1)!\left(M_{n}(0) \cdot A\right)^{-1}\right\}^{1 /(n-1)} \tag{4.6}
\end{equation*}
$$

are optimal solutions of the time-optimal control problem formulated in Section 1.

Moreover, this solution is unique in the following sense: If there are two other optimal location functions $r_{n, *}$ and $R_{n, *}$, then

$$
\begin{equation*}
R_{n, *}-r_{n, *}=S_{n, *}-s_{n, *} \tag{4.7}
\end{equation*}
$$

References

[^0]2. G. Glaeser, "Le Prolongateur de Whitney," Université de Rennes, Vol. 1, 1966.
3. G. Glafser, Prolongement extrémal de fonctions différentiables d'une variable, J. Approx. Theory 8 (1973), 249-261.
4. S. Karlin, Some variational problems on certain Sobolev spaces and perfect splines, Bull. Amer. Math. Soc. (N.S.) 79 (1973), 124-128.
5. S. Karlin, Interpolation properties of generalized perfect splines and the solutions of certain extremal problems I, Trans. Amer. Math. Soc. 206 (1975), 25-66.
6. R. Louboutin, Sur une bonne partition de l'unité, in "Le Prolongateur de Whitney," Université de Rennes, Vol. 2, 1967.
7. I. J. Schoenberg, The perfect B-splines and a time-optimal control problem, Israel J. Math. 10 (1971), 261-274.
8. L. L. Schumaker, "Spline Functions: Basic Theory," Wiley, New York/Toronto, 1981.

[^0]: 1. C. De Boor, A remark concerning perfect splines, Bull. Amer. Math. Soc. (N.S.) 80 (1974), 724-727.
